首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7413篇
  免费   159篇
  国内免费   88篇
测绘学   146篇
大气科学   580篇
地球物理   1552篇
地质学   2776篇
海洋学   569篇
天文学   1410篇
综合类   17篇
自然地理   610篇
  2022年   45篇
  2021年   73篇
  2020年   66篇
  2019年   86篇
  2018年   187篇
  2017年   189篇
  2016年   240篇
  2015年   153篇
  2014年   239篇
  2013年   400篇
  2012年   247篇
  2011年   325篇
  2010年   335篇
  2009年   390篇
  2008年   304篇
  2007年   290篇
  2006年   321篇
  2005年   238篇
  2004年   221篇
  2003年   193篇
  2002年   161篇
  2001年   142篇
  2000年   113篇
  1999年   122篇
  1998年   121篇
  1997年   128篇
  1996年   135篇
  1995年   87篇
  1994年   78篇
  1993年   99篇
  1992年   85篇
  1991年   93篇
  1990年   75篇
  1989年   77篇
  1988年   83篇
  1987年   91篇
  1986年   88篇
  1985年   108篇
  1984年   130篇
  1983年   121篇
  1982年   112篇
  1981年   80篇
  1980年   84篇
  1979年   86篇
  1978年   66篇
  1977年   64篇
  1976年   58篇
  1975年   53篇
  1974年   49篇
  1973年   56篇
排序方式: 共有7660条查询结果,搜索用时 78 毫秒
1.
Long-term experimental watershed studies have significantly influenced our global understanding of hydrological processes. The discovery and characterization of how stream water quantity and quality respond to a changing environment (e.g. land-use change, acidic deposition) has only been possible due to the establishment of catchments devoted to long-term study. One such catchment is the Fernow Experimental Forest (FEF) located in the headwaters of the Appalachian Mountains in West Virginia, a region that provides essential freshwater ecosystem services to eastern and mid-western United States communities. Established in 1934, the FEF is among the earliest experimental watershed studies in the Eastern United States that continues to address emergent challenges to forest ecosystems, including climate change and other threats to forest health. This data note describes available data and presents some findings from more than 50 years of hydrologic research at the FEF. During the first few decades, research at the FEF focused on the relationship between forest management and hydrological processes—especially those related to the overall water balance. Later, research included the examination of interactions between hydrology and soil erosion, biogeochemistry, N-saturation, and acid deposition. Hydro-climatologic and water quality datasets from long-term measurements and data from short-duration studies are publicly available to provide new insights and foster collaborations that will continue to advance our understanding of hydrology in forested headwater catchments. As a result of its rich history of research and abundance of long-term data, the FEF is positioned to continue to advance understanding of forest ecosystems in a time of unprecedented change.  相似文献   
2.
The early history of life harbours many unresolved evolutionary questions, none more important than the genomic origin and cellular evolution of eukaryotes. An issue central to eukaryote origin concerns the position of eukaryotes in the tree of life and the relationship of the host lineage that acquired the mitochondrion some two billion years ago to lineages of modern-day archaea. Recent analyses indicate that the host lineage branches within the Archaea, prompting the search for novel archaeal lineages that can improve our understanding of the cellular evolution of eukaryotes. Here we give a brief review of the studies on Archaea, the tree of life and the cellular evolution of eukaryotes, which is followed by an overview of recent progress fueled by new genomic technologies and recent status of archaeal research in China. Future directions for the study of early evolution are considered.  相似文献   
3.
Geomagnetism and Aeronomy - The paper quantitatively compares the results of calculations of the electron density Ne by the International Reference Ionosphere model IRI-2016 with experimental data...  相似文献   
4.
The method has been developed to evaluate water and heat balance components for vegetation covered area of regional scale based on the refined physical-mathematical model of vertical water and heat exchange between land surface and atmosphere (Land Surface Model, LSM) for vegetation season adapted to satellite information on land surface and meteorological conditions. The LSM is accommodated for utilizing satellite-derived estimates of vegetation and meteorological characteristics as model parameters and input variables. Estimates of these characteristics presented as distributions of their values over the study area have been obtained from AVHRR/NOAA, MODIS/EOS Terra and Aqua, SEVIRI/Meteosat-9, -10 data. To build such estimates methods and technologies have been developed and refined using results of thematic processing measurement data from these sensors. Among them the original Multi Threshold Method (MTM) has been developed and tested to calculate daily precipitation sums using rainfall intensity estimates retrieved from AVHRR and SEVIRI data with subsequent replacement of ground-measured rainfall amounts by these daily rainfalls. All technologies have been adapted to the study area with square of 227300 km2 being the part of the Central Black Earth Region of European Russia. Developed earlier procedures of utilizing satellitederived estimates of vegetation and meteorological characteristics (including precipitation) in the model have been refined and verified. Final result of modeling is the fields of soil water content, evapotranspiration and other water and heat balance components of the region under study for years 2012–2014 vegetation seasons.  相似文献   
5.
In many countries, coastal planners strive to balance the demands between civil, commercial strategy and environmental conversation interests for future development, particularly given the sea level rise in the 21 st century. Achieving a sustainable balance is often a dilemma, especially in low-lying coastal areas where dams in inland river basin are trapping significant amounts of fluvial sediments. We recently investigated the shore of Bohai Bay in northern China where there has been a severe increase in sea level following a program of large-scale coastal reclamation and infrastructure development over the last five decades. To investigate this trend, we obtained sediment cores from near-shore in Bohai Bay, which were dated by ~(137)Cs and ~(210)Pb radionuclides to determine the sedimentation rates for the last 50 years. The average sedimentation rates of Bohai Bay exceeded 10 mm yr~(-1) before 1963, which was much higher than the rate of local sea-level rise. However, our results showed an overall decreasing sedimentation rate after 1963, which was not able to compensate for the increasing relative sea-level rise in that period. In addition, our results revealed that erosion occurred after the 1980 s in the shallow sea area of Bohai Bay. We suggest that this situation places the Bohai Bay coast at a greater risk of inundation and erosion within the next few decades than previously thought, especially in the large new reclamation area. This study may be a case study for many other shallow sea areas of the muddy coast if the sea level continues to rise rapidly and the sediment delivered by rivers continues to decrease.  相似文献   
6.
7.
GRB 170817A, associated with the LIGO-Virgo GW170817 neutron-star merger event, lacks the short duration and hard spectrum of a Short gamma-ray burst (GRB) expected from long-standing classification models. Correctly identifying the class to which this burst belongs requires comparison with other GRBs detected by the Fermi GBM. The aim of our analysis is to classify Fermi GRBs and to test whether or not GRB 170817A belongs—as suggested—to the Short GRB class. The Fermi GBM catalog provides a large database with many measured variables that can be used to explore gamma-ray burst classification. We use statistical techniques to look for clustering in a sample of 1298 gamma-ray bursts described by duration and spectral hardness. Classification of the detected bursts shows that GRB 170817A most likely belongs to the Intermediate, rather than the Short GRB class. We discuss this result in light of theoretical neutron-star merger models and existing GRB classification schemes. It appears that GRB classification schemes may not yet be linked to appropriate theoretical models, and that theoretical models may not yet adequately account for known GRB class properties. We conclude that GRB 170817A may not fit into a simple phenomenological classification scheme.  相似文献   
8.
The giant impact hypothesis is the dominant theory explaining the formation of our Moon. However, the inability to produce an isotopically similar Earth–Moon system with correct angular momentum has cast a shadow on its validity. Computer-generated impacts have been successful in producing virtual systems that possess many of the observed physical properties. However, addressing the isotopic similarities between the Earth and Moon coupled with correct angular momentum has proven to be challenging. Equilibration and evection resonance have been proposed as means of reconciling the models. In the summer of 2013, the Royal Society called a meeting solely to discuss the formation of the Moon. In this meeting, evection resonance and equilibration were both questioned as viable means of removing the deficiencies from giant impact models. The main concerns were that models were multi-staged and too complex. We present here initial impact conditions that produce an isotopically similar Earth–Moon system with correct angular momentum. This is done in a single-staged simulation. The initial parameters are straightforward and the results evolve solely from the impact. This was accomplished by colliding two roughly half-Earth-sized impactors, rotating in approximately the same plane in a high-energy, off-centered impact, where both impactors spin into the collision.  相似文献   
9.
10.
In temperate humid catchments, evapotranspiration returns more than half of the annual precipitation to the atmosphere, thereby determining the balance available to recharge groundwaters and support stream flow and lake levels. Changes in evapotranspiration rates and, therefore, catchment hydrology could be driven by changes in land use or climate. Here, we examine the catchment water balance over the past 50 years for a catchment in southwest Michigan covered by cropland, grassland, forest, and wetlands. Over the study period, about 27% of the catchment has been abandoned from row‐crop agriculture to perennial vegetation and about 20% of the catchment has reverted to deciduous forest, and the climate has warmed by 1.14 °C. Despite these changes in land use, the precipitation and stream discharge, and by inference catchment‐scale evapotranspiration, have been stable over the study period. The remarkably stable rates of evapotranspirative water loss from the catchment across a period of significant land cover change suggest that rainfed annual crops and perennial vegetation do not differ greatly in evapotranspiration rates, and this is supported by measurements of evapotranspiration from various vegetation types based on soil water monitoring in the same catchment. Compensating changes in the other meteorological drivers of evaporative water demand besides air temperature—wind speed, atmospheric humidity, and net radiation—are also possible but cannot be evaluated due to insufficient local data across the 50‐year period. Regardless of the explanation, this study shows that the water balance of this landscape has been resilient in the face of both land cover and climate change over the past 50 years.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号